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Abstract 

In common with other elemental actinides, metallic uranium exists in several allotropic forms, differing from 
one another by complex but subtle atomic rearrangements. This article reviews progress in understanding the 
successive phase transformations from the perspective of soft-mode instabilities. 

1. Soft mode phenomena 

Certain structural phase transformations in solids 
result from a vibrational instability in the material. 
These are termed "soft-mode" displacive transforma- 
tions, and the associated soft-mode concept provides 
a unifying perspective [1, 2]. This idea, combined with 
simple symmetry arguments and free energy consid- 
erations, provides a useful tool by which the phase 
behavior of materials can be systematized and under- 
stood at the phenomenologieal level. 

Any phase transformation can be characterized by 
an order parameter, i.e. a quantity which is non-zero 
in one of the phases but which vanishes in the other. 
Order parameters for displacive phase transformations 
are defined in terms of what may be called a phonon 
expansion, such that 

Iz,k(t) = E ~k(qJ) Qqy(t) exp(iql) (1) 
q,J 

The displacement of the kth atom in the lth unit 
cell is decomposed into normal modes which are plane 
waves with a wave vector q and a branch labelj. (There 
are three acoustic branches and 3 N -  3 optical branches, 
if there are N atoms in the unit cell.) Each mode has 
a polarization vector ~(qj) specifying the pattern of 
the displacements, and an amplitude Qqj(t) called the 
normal coordinate. Any arbitrary set of displacements 
can be decomposed in this way. In a soft-mode displacive 
transformation, the resulting average static atomic dis- 
placements resemble the frozen-in-pattern of vibrations 
from a single normal mode with wave vector qs. In 

other words, the order parameter can be chosen as a 
static component (Qqs~) of a single normal mode. The 
displacements are always referred to the more symmetric 
of the two phases, and their appearance will generally 
produce a less symmetric phase. 

Not all structural transformations can be described 
by a single normal mode; in fact, most (including 
seemingly simple examples, such as face-centered cubic 
(f.c.c.) to hexagonal close-packed (h.c.p.)) cannot. When 
such a description is possible, the natural presumption 
is to implicate the phonon in question in the mechanism 
of the transformation. The dynamics of a phase trans- 
formation concern the time-dependent fluctuations of 
the order parameter, i.e. the phonons. At a continuous, 
or second-order, transformation, the amplitudes of these 
fluctuations diverge and, since phonon amplitudes are 
inversely proportional to the square of their vibrational 
frequency to2(q), one is led to the proposition that 
to2(qs) ~ 0 along the phase boundary. 

2. a-Uranium 

The simple body-centered cubic (b.e.c.) structure is 
the stable, highest temperature solid modification of 
a majority of the simple metals. B.c.c. metals tend to 
have lower phonon energies and, thus, higher vibrational 
entropy than their f.c.c, counterparts [3, 4]. The high 
temperature phase diagram of uranium metal is shown 
in Fig. 1. Not surprisingly, y-U, which is the stable 
phase in equilibrium with the liquid, has b.c.c, structure. 
Therefore, it is natural to choose b.c.c, as the parent 
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Fig. 1. High temperature phase diagram for uranium. 
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Fig. 2. Transformations induced by [110] TA displacements on 
a b.c.c, lattice: (a) [110] planes of the b.c.c, structure (Im3m), 
where the open circles represent atoms in the plane above those 
represented by shaded circles; (b) shifting alternate layers along 
[1-10] (and stretching the long- to short-axis ratio from 2 l/z to 
3 m) produces a h.c.p.-like structure (P63/mmc); (c) further shifting 
of alternate layers produces the a-U structure (Cmcm). 

structure in which to elaborate the remaining structures. 
(Th, Pa, Np and Pu also have stable high temperature 
b.c.c, phases, and this is the natural starting point for 
an inclusive structural "theory" of all the known actinide 
metals.) 

The structural changes associated with the y-U-to- 
/3-U transformation have been discussed recently [5], 
but are too complex to discuss here, and certainly do 
not represent a single-phonon mode. In contrast, the 
y-U-to-a-U transformation lends itself naturally to a 
"soft-mode" description. Formally, the a-U structure 
results from the freezing-in of a transverse acoustic 
(TA) normal vibrational mode of the b.c.c, structure 
with a wave vector q = [½, ½, 0], i.e. with alternate [110] 
planes displaced in opposing [1-10] directions, as shown 
in Fig. 2. The relative displacement of the adjacent 
planes is quite large but the pattern is precisely correct. 
In particular, the centered orthorhombic unit cell re- 
quires that all atoms within a given [110] plane be 
displaced identically. There are additional long-wave- 
length elastic distortions that contract the unit cell in 
the [001] b.c.c, direction (the a direction in a-U), while 

expanding the lattice along the [1-10] direction, ap- 
proximately preserving the crystal volume. However, 
these secondary elastic distortions are required by basic 
symmetry arguments, so are "built-in" to a soft-mode 
description in a satisfactory way. On this basis, there 
is a strong presumption that transverse phonon anom- 
alies exist in y-U. Unfortunately, to our knowledge, 
corroborative neutron scattering experiments have not 
been attempted. 

One odd thing about the y-U-to-a-U transformation 
(assuming this is the correct mechanism) is that, in the 
process of shifting, the [110] planes pass through and 
reject an h.c.p, phase, which occurs for a relative 
displacement of 21/2a/6 =0.83 /~, i.e. about half that 
required for a-U, as shown in Fig. 2. Presumably, the 
fact that most materials do not pass up an opportunity 
to form a close-packed arrangement accounts for the 
unpopularity of the a-U structure in other regions of 
the periodic table, although it does occur for other 
actinides (Am-IV, Cm-III, Bk-III and Cf-III). This is 
made additionally plausible by the remarkable fact that 
the h.c.p, structure is not found among the actinides. 
The "double h.c.p." structure (Am-I, Cm-I, Bk-I and 
Cf-I) derives from a freezing-in of a different TA phonon 
with wave vector [~, ~, O] [5]. 

3. The puzzle of low temperature a-Uranium 

The a-U structure is as close as uranium comes to 
realizing a close-packed structure, and Fig. 1 reveals 
no additional low temperature phases. Nevertheless, 
by 1980, a variety of measurements, including anomalies 
in electron transport [6], elastic compliance [7] and 
thermal expansion [8], hinted at the existence of not 
one but three additional low temperature phase trans- 
formations at 43, 37 and 22 K. However, diffraction 
experiments designed to detect changes in crystal struc- 
ture or the onset of magnetic order had failed [9]. It 
has taken another decade to sort out the puzzle. 

Progress began with the measurement of the room 
temperature lattice dynamics, using inelastic neutron 
scattering techniques [10]. Figure 3 shows the phonon 
energies plotted against their wave vector along the 
principal symmetry directions for the a-U structure. 
The deep minimum in the ~4 branch at q=[½, 0, 0], 
indicative of a tendency of adjacent [1 0 0] planes to 
dimerize, is quite unusual. Furthermore, the minimum 
phonon frequency shows a classical "soft-mode" be- 
havior, moving to a lower frequency upon lowering the 
temperature, reaching a minimum at about 70 K, and 
stiffening (moving to higher frequency) somewhat there- 
after. Furthermore, a low temperatures, weak elastic 
(Bragg) scattering was observed to persist at (or at 
least very near) the positions in reciprocal space where 
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Fig. 3. Phonon energy vs. wave vector along symmetry directions in a-U. Anomalous dispersion indicative of soft-mode behavior is 
seen in the TA branch labelled E4 (after ref. 11). 

the inelastic scattering occurred [11]. While the peaks, 
known as the "Smith peaks", were the first solid dif- 
fraction manifestations of the structural modifications 
taking place, they only raised two further difficulties: 

(1) they occurred at an onset temperature (about 
60 K) considerably higher than those suggested by the 
anomalies in the bulk properties discussed above; 

(2) more fundamentally, they made no "sense" as 
modulations of the a-U structure. 

This second point requires further discussion. Con- 
ventional soft-mode phonon condensation modulates 
the parent structure in such a way as to leave the 
parent Bragg peak positions unaffected but causes each 
of them to be decorated with new Bragg "satellites". 
The Smith peaks could be classified according to this 
scheme, but only as satellites of. unobserved "ghost" 
parent Bragg peaks with a lattice constant differing by 
about one part in 103 from the one actually observed. 
The discrepancy was small but impossible to dismiss. 
The understanding of this "ghost" lattice was the last 
piece of the puzzle to fall into place. 

4. Incommensurate  modulation 

In the course of attempting to sort out the Smith 
peaks, a new set of diffraction satellites was discovered 
[12], which further detailed investigations [13] showed 

to suffer from none of the difficulties discussed above. 
Although weak (about 1% of the parent a-U Bragg 
peaks), they were still about 100 times stronger than 
the original Smith peaks. The onset temperature 
(To = 43 K) agreed with the highest suggested transition 
temperature from the bulk measurements, and the peak 
positions indexed properly as modulations of the es- 
tablished a-U structure. The reason that they had been 
missed in earlier investigations is that the modulation 
wave vector is incommensurate with that of the parent 
structure, so that the peaks could not be detected in 
Bragg peak scans along directions of high symmetry. 

When the wave vector qs of the modulation cannot 
be related to the periodicity of the underlying lattice 
by multiplication by a rational number, the structure 
is said to be incommensurate. Other examples of in- 
commensurate structures occur in surface reconstruc- 
tion, quasi-crystals and in some antiferromagnets. In 
metals, incommensurate displacive transformations may 
result from a charge density wave (CDW) in the con- 
duction electrons near the Fermi surface [14]. The 
atomic cores displace in response to the electric fields 
set up by the CDW. CDW instabilities are favored 
when two large portions of the Fermi surface differ 
by the wave vector qs (Fermi surface nesting). This is 
most common for quasi-one- [15] or quasi-two-dimen- 
sional [16] metals, because the Fermi energy is then 
independent of some component(s) of the electron 
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momenta. The phonon mode softening in CDW trans- 
formations is brought about by conduction electron 
screening effects (giant Kohn anomalies) [17] but 
classical examples of incommensurate soft-mode 
transformations occur in insulators as well as in 
metals [18]. 

As discussed above, the diffraction from a modulated 
lattice causes each of the parent Bragg peaks [HKL] 
to be decorated with Bragg satellites, which appear at 
the positions (hkl) = (H+q~, K ± q y ,  L +q~), where q~ = 
(qx, qy, qJ  is the soft-mode wave vector. The measured 
values for qs at temperatures near To are approximately 
(0.49, 0.13, 0.22) and, since all the components of q~ 
are non-zero, there are eight satellites about each parent 
Bragg reflection. The nature of the modulation dis- 
placement pattern has been deduced from a study of 
the intensities of the satellite peaks [12]. The intensities 
are well reproduced by a sinusoidal displacement pat- 
tern, with the largest displacement amplitude (0.027 
/~) along the [100] direction. The displacement pattern 
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is consistent with that required by symmetry for a E4 
phonon mode, confirming the soft-mode nature of the 
instability. 

5. I~ck- in  transformations 

The discovery of the incommensurate soft-mode in- 
stability resolved the nature of the transformation at 
43 K but did not clarify the lower temperature anomalies 
at 37 and 22 K. The key to the further understanding 
of these effects came from careful synchrotron X-ray 
(and later neutron) diffraction experiments, which de- 
termined the exact wave vector qs and its variation with 
temperature [19]. A summary of these results is shown 
in Fig. 4. Between 43 and 37 K, all the components 
of qs change smoothly; however, below 37 K, qx is frozen 
at ½. Similarly, qy and qz vary freely until 22 K, where 
they become frozen at rational values. 

The behavior of qx observed at 37 K had been 
previously predicted on theoretical grounds [20]. It is 
an example of incommensurate lock-in - a phenomenon 
common in the study of incommensurate structures 
[16]. An incommensurate sinusoidal modulation of the 
form of eqn. (1) continuously goes in and out of phase 
with the underlying periodic lattice, and extracts no 
net interaction energy. (In fact, the phase of the mod- 
ulation with respect to the lattice is freely variable, 
giving rise to a "phason" degree of freedom.) However, 
by adding multiple harmonics to the spatial modulation 
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Fig. 5. X-ray diffraction scan at 22 K, showing primary modulation 
satellites at values of l = 1 + 2 ,  each surrounded by a pair of 
weaker secondary satellites displaced by A/= + ~. This pat tern 
confirms the existence of phase-slip defects in the low temperature 
phase of ot-U (after ref. 19). 
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Fig. 6. Schematic representation of the domain boundary region in low temperature a-U. The lines represent the nodal planes of 
the sinusoidal modulation. It should be noted that the wave vector is along the symmetric [1 0 0] direction within the boundary 
region (after ref. 22). 

with appropriate phasing, the regions with favorable 
(unfavorable) interaction can be expanded (contracted), 
so gaining further overall stabilization of the modulation. 
Careful consideration reveals that this process also 
drives the fundamental wave vector qs toward a sub- 
multiple of the periodicity of the underlying lattice [21], 
leading to the lock-in observed behavior. 

The qx lock-in is driven by fourth-order terms in the 
amplitude of the primary harmonic displacement. Grii- 
bel et al. [19] extended the work of Walker [20] to 
show how sixth-order terms in the amplitude would 
cause both qy and qz to lock-in simultaneously to the 

1 value -g. Figure 4 shows that the observed value is 
qy = ~, whereas qz takes a slightly different value of 

5 1 2 or ~, i.e. close to but not equal to z. This can be 
1 explained by introducing into the q= = -~ structure oc- 

casional phase slips, where the modulation changes not 
by the prescribed value 4, = 2~-/6 between adjacent unit 
cells along the c axis but by twice that amount. If, on 
average, there is one phase slip for every n unit cells 
and they repel one another, they can form a regular 
array with an average wave vector q= = (1 + ln)/6. Thus, 

5 the q = 2  and ~ structures are easily recognized as 
the n = l l  and n = 9  phase-slip defects in the basic 

1 qz=-g structure. The diffraction signature of such a 
phase-slip structure consists of another hierarchy of 
diffraction peaks that decorate the primary satellite 
peaks in much the same way that the primary satellites 
decorate the main Bragg peaks. The correctness of 
the above explanation was confirmed with the observa- 
tion of these phase-slip satellites as shown in Fig. 5 
[19]. 

6. A ghost story 

The remaining puzzle of ot-U is the occurrence of 
the anomalous Smith peaks that seem to arise from 
diffraction from a "ghost" lattice with a different lattice 
spacing. A way to understand this phenomenon has 
been proposed recently by Yamada [22]. In reality, 
there are four distinct but equivalent a-U structures 
below 37 K, corresponding to modulation wave vectors 
qs=(½, + q ,  +q~). They differ only in the phase rela- 
tionship of the various sinusoidal components of the 
displacements. In general, a given specimen will be 
divided roughly equally into domains of each type. In 
the region that separates two domains, the modulation 
wave vector changes smoothly, as shown schematically 
in Fig. 6. Yamada showed by symmetry that, in the 
interior of each domain, there is a uniaxial strain ell 
along the x axis, which is proportional to [qy2+qz2], 
producing an identical transformation-induced strain 
within all the domains. However, this strain vanishes 
within the domain boundary region where qy=q,=0, 
leaving the region with a slightly different lattice spacing. 
Since, within the boundary region, the modulation wave 
vector points along the [1 0 0] direction, diffraction from 
the domain boundary regions can explain satisfactorily 
the existence of the Smith peaks. 
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